## Commute analysis

Danny Shapiro
Alex Thompson
Bryce Meredig
Eddie Schwalbach

#### Problem statement

Compare the energy and CO2 costs of these different commuting methods:

- -Angelenos car driver with 40-mile roundtrip
- -New York subway rider with 15-mile roundtrip
- -Evanstonian bike rider with 4-mile roundtrip
- -Bostonian bus rider with 6-mile roundtrip
- -Chicago El rider with 15-mile roundtrip
- -Venetian rider of a "vaporetto" with 4-mile roundtrip

#### Given assumptions

- Roads are assumed to be existing.
- Rail/tunnels (for subway) must be fully accounted for.
- Consider typical recycling rates given by CES, both for creating and disposing of vehicles.
- Maintenance costs can be ignored.

# Venice vaporetto



#### Venice vaporetto assumptions

- Approximately same composition, weight, and lifetime as subway car.
- From nzsses.auckland.ac.nz Sustainable Transport study, emit 1.37 kg of CO2 per mile
- From Wikipedia, 150 passengers per trip

|           | MJ/commute | kg CO2/commute |
|-----------|------------|----------------|
| Vaporetto | 142.24     | 10.37          |

#### Boston bus assumptions

- From greencarcongress.com, get 2.3 miles per gallon
- From wiki.answers.com, average mass is 11364 kg
- CO2 emissions scaled up from car based on mass
- From Wikipedia, diesel contains 38.7 MJ per liter
- Composition is 100% steel
- Bus lifetime is 5 years

|           | MJ/commute | kg CO2/commute |
|-----------|------------|----------------|
| Vaporetto | 142.24     | 10.37          |
| Bus       | 49.32      | 3.3            |

## New York subway "assumptions"

- From 1904 NY subway info from *Railway Age* (2004), subway car composition.
- From nycsubway.org, ridership and track trivia (length, cars in service, etc.).
- Linear increase in usage from 1900 to 2005.

| Rail                                 |            |       |                                 |                 |                  |                  |          |
|--------------------------------------|------------|-------|---------------------------------|-----------------|------------------|------------------|----------|
| Fraction of total NY subway in 15 mi | 0.07       |       | Not all riders will travel over | er this part of | the track        |                  |          |
| Steel needed for rail (g/mi)         | 83823870   |       | http://www.railway-technic      | al.com/track.s  | html             |                  |          |
| Energy from steel production (J/g)   | 25583      |       | CES for carbon steel AISI       | 1080            |                  |                  |          |
| CO2 from steel production (g/g)      |            | 2.17  | CES for carbon steel AISI       | 1080            |                  |                  |          |
| Wooden ties needed for rail (g/mi)   | 211200000  |       | http://www.railway-technic      | al.com/track.s  | html             |                  |          |
| Energy from wood production (J/g)    | 15141      |       | CES for wood                    |                 |                  |                  |          |
| CO2 from wood production (g/g)       |            | -1.11 | CES for wood                    |                 |                  |                  |          |
| Stone ballast needed for rail (g/mi) | 1047062780 |       | www.railway-technical.com       | n/track.shtml   | and track gaug   | je               |          |
| Energy from stone production (J/g)   | 190        |       | CES for stone                   |                 |                  |                  |          |
| CO2 from stone production (g/g)      |            | 0.01  | CES for stone                   |                 |                  |                  |          |
| Track gauge (m)                      | 1.435      |       | wikipedia.org                   |                 |                  |                  |          |
| Lifespan of rails (yr)               | 40         |       | Estimated from ask.metaf        | ilter.com (Hov  | v long do the ra | ails in a subway | / last?) |
| Riders in rail lifespan              | 223259010  |       | Calculated from population      | data            |                  |                  |          |
|                                      |            |       |                                 |                 |                  |                  |          |

|           | MJ/commute | kg CO2/commute |  |
|-----------|------------|----------------|--|
| Vaporetto | 142.24     | 10.37          |  |
| Bus       | 49.32      | 3.3            |  |
| Subway    | 65         | 4.3            |  |

### Chicago elevated train assumptions

- Use New York subway data, except
  - Subtract out tunnel costs.
  - Scale down based on ridership.

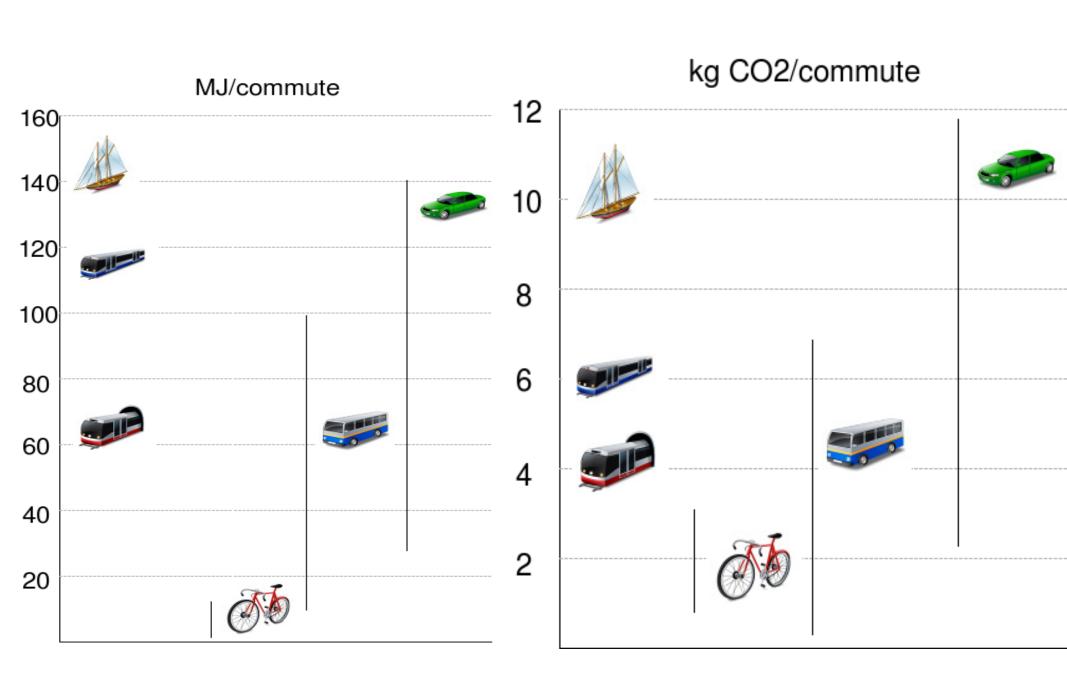
|           | MJ/commute | kg CO2/commute |
|-----------|------------|----------------|
| Vaporetto | 142.24     | 10.37          |
| Bus       | 49.32      | 3.3            |
| Subway    | 65         | 4.3            |
| El        | 115.00     | 6.4            |

## Los Angeles car assumptions

- From autoalliance.org, car is 62% steel, 12% iron 9% aluminum, 9% plastic, 3% glass, and 5% rubber.
- One person per car
- Gets 25 miles per gallon
- Weighs 1306 kg (autoalliance.org)
- Lifespan is 150,000 miles
- From uvi.edu, 60,360,000 J per gallon of gasoline
- From Hu et. al. (*Appl. Energy* 2004), 0.23 J needed to produce 1 J of gasoline
- From bee.gov.in, 2393.1 MJ needed to manufacture one car
- From cleancarcampaign.org, 100% of the car is recycled.

|           | MJ/commute | kg CO2/commute |  |  |
|-----------|------------|----------------|--|--|
| Vaporetto | 142.24     | 10.37          |  |  |
| Bus       | 49.32      | 3.3            |  |  |
| Subway    | 65         | 4.3            |  |  |
| El        | 115.00     | 6.4            |  |  |
| Car       | 140        | 11.9           |  |  |

#### Evanston bike assumptions


- From depts.washington.edu bike materials case study, bike is 90% aluminum, 7% steel, and 3% plastic.
- Commuter bikes last about 6 years (estimated via ridemonkey.com).
- Bike weighs 25 pounds

| 11      | www.holon.se (Folke Günther)                                     |
|---------|------------------------------------------------------------------|
| 1,318.0 | Assume food travels halfway across the USA (www.timeanddate.com) |
| 35      | Florida Urban Transport Research                                 |
| 0.2     | mb-soft.com                                                      |
| 90      | http://autoline.info/sales.php?cat=004                           |
| 6.0     | 2006 average                                                     |
| 0.106   | wikipedia, for a banana                                          |
|         | 35<br>0.2<br>90<br>6.0                                           |

|           | MJ/commute | kg CO2/commute |  |
|-----------|------------|----------------|--|
| Vaporetto | 142.24     | 10.37          |  |
| Bus       | 49.32      | 3.3            |  |
| Subway    | 65         | 4.3            |  |
| El        | 115.00     | 6.4            |  |
| Car       | 140        | 11.9           |  |
| Bike      | 5.74       | 2.1            |  |

# Best- and worst-case analysis of car, bike, and bus

- -We vary within reason the parameters of these four modes of transportation.
  - Car: change mpg (50) and weight (730 kg) to that of a small, European car; account for car-pooling (4 riders); factor in cost of road (estimated from DOT and DOE info on miles traveled per year and money spent on maintenance and lighting)
  - Bike: vary distance that food travels (20-3000 miles)
  - Bus: vary ridership (10-110% capacity); factor in cost of road



#### Numbers (in case anyone is interested)

|                           | MJ/commute | kg CO2/commute |                                                             |
|---------------------------|------------|----------------|-------------------------------------------------------------|
| Car 25, 1, big, road      | 140.90     | 11.94          | road cost for car is .9 MJ/commute and .04 kg/commute       |
| Car 50, 1, big, road      | 81.40      | 6.72           |                                                             |
| Car 50, 1, small, road    | 72.40      | 6.13           |                                                             |
| Car 50, 4, small, no road | 26.90      | 2.18           |                                                             |
| Bike near                 | 2.88       | 1.06           |                                                             |
| Bike far                  | 9.45       | 3.50           |                                                             |
| Bus 10%, road             | 99.50      | 6.62           | road cost for bus is 6.01 MJ/commute and .29 kg CO2/commute |
| Bus 110% no road          | 9.00       | 0.60           |                                                             |

#### The end!!

